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AbstractWe investigate the ability of hydrological multimodel ensemble predictions to enhance the skill
of streamflow forecasts at short‐ to medium‐range timescales. To generate the multimodel ensembles, we
implement a new statistical postprocessor, namely, quantile regression‐Bayesian model averaging
(QR‐BMA). Quantile regression‐Bayesian model averaging uses quantile regression to bias correct the
ensemble streamflow forecasts from the individual models and Bayesian model averaging to optimally
combine their probability density functions. Additionally, we use an information‐theoretic measure,
namely, conditional mutual information, to quantify the skill enhancements from the multimodel forecasts.
We generate ensemble streamflow forecasts at lead times from 1 to 7 days using three hydrological
models: (i) Antecedent Precipitation Index‐Continuous, (ii) Hydrology Laboratory‐Research Distributed
Hydrologic Model, and (iii) Weather Research and Forecasting Hydrological modeling system. As forcing to
the hydrological models, we use weather ensemble forecasts from the National Centers for
Environmental Prediction 11‐member Global Ensemble Forecast System Reforecast version 2. The
forecasting experiments are performed for four nested basins of the North Branch Susquehanna River, USA.
We find that after bias correcting the streamflow forecasts from each model, their skill performance
becomes comparable. We find that the multimodel ensemble forecasts have higher skill than the best
single‐model forecasts. Furthermore, the skill enhancements obtained by the multimodel ensemble
forecasts are found to be dominated by model diversity, rather than by increased ensemble size alone. This
result, obtained using conditional mutual information, indicates that each hydrological model contributes
additional information to enhance forecast skill. Overall, our results highlight benefits of hydrological
multimodel forecasting for improving streamflow predictions.

1. Introduction

Multimodel forecasting is a well‐established technique in atmospheric science (Bosart, 1975; Gyakum, 1986;
Krishnamurti, 2003; Sanders, 1973; Weisheimer et al., 2009), which consists of using the outputs from sev-
eral models to make and improve predictions about future events (Fritsch et al., 2000). The motivation for
multimodel forecasting is that for a complex system, such as the atmosphere or a river basin, comprised
by multiple processes interacting nonlinearly and with limited observability, predictions solely based on
the outputs from a single model will be prone to errors and biases (Fritsch et al., 2000). Indeed, early experi-
ments comparing blended forecasts from different weather models against single‐model predictions demon-
strated the ability of multimodel predictions to improve the skill and reduce the errors of weather forecasts
(Bosart, 1975; Gyakum, 1986; Sanders, 1973; Thompson, 1977; Winkler et al., 1977). This was found to be the
case for both forecasts issued by humans (Sanders, 1963, 1973) and from numerical models (Bosart, 1975;
Fraedrich & Leslie, 1987; Fraedrich & Smith, 1989; Fritsch et al., 2000; Gyakum, 1986; Krishnamurti
et al., 1999, 2000; Sanders, 1973).

Initial meteorological multimodel experiments accounted for model‐related uncertainties but not for uncer-
tainties in the initial states. To account for the latter, multimodel ensembles were introduced, where multi-
ple ensemble members from individual models are generated for the same lead time and geographic area by
perturbing the models' initial states (Hamill & Colucci, 1997; Stensrud et al., 1999; Toth & Kalnay, 1993). An
illustrative example of a recent, successful multimodel framework is the North American Multimodel
Ensemble experiment for subseasonal to seasonal timescales (Bastola et al., 2013; Becker et al., 2014;
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Kirtman et al., 2013). Indeed, most of the established operational systems across the globe for short‐ to
medium‐range weather forecasting are multimodel, multiphysics ensemble systems (Buizza et al., 2005;
Du et al., 2003; Hamill et al., 2013; Palmer et al., 2004). In contrast, hydrological multimodel ensemble pre-
diction systems (HMEPS) have not been widely implemented and remain an underexplored area of research.
To our knowledge, there is currently no operational HMEPS in the world, despite their success in weather
(Hagedorn et al., 2012; Hamill et al., 2013) and climate forecasting (Bastola et al., 2013; Becker et al.,
2014; Kirtman et al., 2013).

HMEPS can be classified into the following three general categories, depending on whether multiple
weather and/or hydrological models are used: (i) a single hydrological model forced by outputs from multi-
ple numerical weather prediction (NWP) models (Thirel et al., 2008, 2010), (ii) multiple hydrological models
forced by outputs from a single NWPmodel (Randrianasolo et al., 2010), and (iii) multiple hydrological mod-
els forced by outputs from multiple NWP models (Velázquez et al., 2011). As is the case in meteorology,
hydrological multimodel outputs can be deterministic or probabilistic, depending on how many and the
manner in which ensembles are generated from eachmodel (Davolio et al., 2008). It is important to note that
although hydrological multimodel approaches have been investigated before (Ajami et al., 2007; Duan et al.,
2007; Vrugt & Robinson, 2007), the vast majority of those studies have been performed in simulation mode
(i.e., by forcing the hydrological models with observed weather variables), as opposed to forecasting mode.
Simulation studies may provide useful information about near‐real‐time hydrological forecasting
conditions. However, at medium‐range timescales (≥ 3 days), where weather uncertainties tend to be as
important or more dominant than hydrological uncertainties, hydrological simulations provide considerably
less information about forecast behavior (Sharma et al., 2018; Siddique & Mejia, 2017).

One of the earliest attempt at hydrological multimodel prediction is that of Shamseldin and O'Connor
(1999). They combined streamflow simulations from different rainfall‐runoff models by assigning different
weights to the models based on their performance during historical runs. Since then, several simulation stu-
dies have been performed to address the potential of hydrological multimodel approaches to improve under-
standing and prediction of hydrological variables (Ajami et al., 2007; Bohn et al., 2010; Duan et al., 2007;
Georgakakos et al., 2004; Regonda et al., 2006; Vrugt & Robinson, 2007). In hydrological forecasting, recent
implementations of the multimodel approach have been focused on seasonal or longer timescales (Nohara
et al., 2006; Yuan & Wood, 2013), while very few studies are available at short‐ to medium‐range timescales
(Hopson &Webster, 2010; Velázquez et al., 2011). Furthermore, a shortcoming of the latter studies has been
the use of similar hydrological models to generate the multimodel forecasts. For example, Hopson and
Webster (2010) as well as Velázquez et al. (2011) used similar spatially lumped or semidistributed hydrolo-
gical models for their respective multimodel experiments.

To maximize the benefits from a multimodel approach, it is critical to use dissimilar models (Thompson,
1977), a property that is referred to as model diversity (DelSole et al., 2014). In hydrological science, different
model types are available that could be used to fulfill model diversity, for example, spatially lumped, spatially
distributed, process‐based, or land‐surface models (Reed et al., 2004; Smith et al., 2012). These different types
of models tend to differ markedly in their spatial discretization, physical parameterizations, and numerical
schemes (Kollet et al., 2017), potentially making them good candidates for multimodel forecasting. Another
important concern with the multimodel approach is that of distinguishing whether any gains in skill from
the multimodel are due to model diversity itself or are related to increases in the ensemble size. Recently,
an information‐theoretic measure, namely, conditional mutual information (CMI), was proposed to address
this issue in climate forecasts (DelSole et al., 2014). CMI is implemented here for the first time with hydro-
logical multimodel forecasts.

Any multimodel forecast requires some type of statistical technique (with simple averaging being the sim-
plest approach; DelSole, 2007; DelSole et al., 2013) or postprocessor (Duan et al., 2007; Fraley et al., 2010;
Gneiting et al., 2005; Raftery et al., 1997) to optimally combine the ensemble forecasts from the individual
models. Multimodel postprocessing is typically employed to accomplish several objectives: (i) reduce
systematic biases in the outputs from each model, (ii) assign each model a weight that measures its
contribution to the final multimodel forecast, and (iii) quantify the overall forecast uncertainty.
Although a number of multimodel postprocessors have been developed and implemented for dealing with
hydrological simulations (Duan et al., 2007; Hsu et al., 2009; Madadgar & Moradkhani, 2014; Najafi et al.,
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2011; Shamseldin et al., 1997; Steinschneider et al., 2015; Vrugt & Robinson, 2007; Xiong et al., 2001), few
have been applied in a forecasting context (Hopson & Webster, 2010). In this study, we implement a new
quantile regression‐Bayesian model averaging (QR‐BMA) postprocessor. The postprocessor uses QR to
bias correct the streamflow forecasts from the individual models (Sharma et al., 2018) and BMA to
optimally combine their probability density functions (pdfs; Duan et al., 2007; Vrugt & Robinson,
2007). QR‐BMA takes advantage of the proven effectiveness and simplicity of QR to remove systematic
biases (Gomez et al., 2019; Sharma et al., 2018) and of BMA to produce optimal weights (Duan et al.,
2007; Liang et al., 2013).

Our primary goal with this study is to understand the ability of hydrological multimodel ensemble predic-
tions to improve the skill of streamflow forecasts at short‐ to medium‐range timescales. With this goal, we
seek to answer the following twomain questions: Are multimodel ensemble streamflow forecasts more skill-
ful than single‐model forecasts? Are any skill improvements from themultimodel ensemble streamflow fore-
casts dominated by model diversity or the addition of new ensemble members (i.e., increasing ensemble
size)? Answering the latter is relevant to operational forecasting because generating many ensemble mem-
bers in real time is often not feasible or realistic and may not be as effective if skill enhancements are domi-
nated by model diversity. The paper is structured as follows. Section 2 describes our methodology. Section 3
describes the experimental setup. The main results and their implications are presented in section 4. Lastly,
section 5 summarizes our conclusions.

2. Methodology
2.1. Statistical Multimodel Postprocessor

The proposed postprocessor uses QR to bias correct the ensemble forecasts from individual models and BMA
to combine the bias‐corrected forecasts. We begin by briefly revisiting the BMA technique. BMA generates
an overall forecast pdf by taking a weighted average of the conditional pdfs associated with the individual
model forecasts. Letting Δ be the forecasted variable, D the training data, andM = [M1,M2, .…,Mk] the inde-
pendent predictions from a total of K hydrological models, the pdf of the BMA probabilistic prediction of Δ
can be expressed by the law of total probability as

P Δj M1;M2;…;MKð Þð Þ ¼ ∑
K

k¼1
P ΔjMkð ÞP MkjDð Þ; (1)

where P(Δ|Mk) is the posterior distribution of Δ given the model predictionMk and P(Mk|D) is the posterior
probability of model Mk being the best one given the training data D. P(Mk|D) reflects the performance of
model Mk in predicting the forecast variable during the training period.

The posterior model probabilities are nonnegative and add up to one (Raftery et al., 2005), such that

∑
K

k¼1
P MkjDð Þ ¼ 1: (2)

Thus, P(Mk|D) can be viewed as the model weight, wk, reflecting an individual model's relative contribution
to predictive skill over the training period. The BMA pdf is therefore a weighted average of the conditional
pdfs associated with each of the individual model forecasts, weighted by their posterior model probabilities.
Since model predictions are time variant, letting t be the forecast lead time, equation (1) can be written as

P Δtj Mt
1;M

t
2;…;M

t
K

� �� � ¼ ∑
K

k¼1
wt
kP ΔtjMt

k

� �
: (3)

The efficient application of BMA requires bias correcting the ensemble forecasts from the individual models
and optimizing their weights wt

k (Raftery et al., 2005). We used QR to bias correct the forecasts. QR has sev-
eral advantages as compared to the linear regression bias correction used in the original BMA approach
(Raftery et al., 2005). It does not make any prior assumptions regarding the shape of the distribution, and,
since QR results in conditional quantiles rather than conditional means, QR is less sensitive to the tail beha-
vior of the streamflow data and, consequently, more robust to outliers.
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To implement QR, the bias‐corrected ensemble forecasts from each model k and forecast lead time t, f tk;τ, are
determined using

f tk;τ ¼ f
t
k þ bξ tk;τ ; (4)

where f
t
k is the ensemble mean forecast of model k at time t andbξ tk;τ is the error estimate at the quantile inter-

val τ defined as bξ tk;τ ¼ atk;τ þ btk;τf
t
k: (5)

In equation (5), atk;τ and btk;τ are the regression parameters for model k and quantile interval τ at time t. The

parameters associated with each model are determined separately by minimizing the sum of the residuals
from a training data set as follows:

argminf∈R ∑
J

j¼1
Γt
τ ξ tτ;j−

bξ tτ;j j; f j
� �h i

: (6)

ξtτ;j and f j are the jth paired samples from a total of J samples,bξ tτ;j is computed as the observed flowminus the
forecasted one at time t, Γtτ is the QR function for the τth quantile at time t defined as

Γtτ Ψt
j

� �
¼ τ−1ð ÞΨt

j if Ψt
j≤0

τ Ψt
j if Ψt

j>0

n o
; (7)

andΨt
j is the residual term computed as the difference between ξ tτ;j and

bξ tτ;j j; f j
� �

for any quantile τ ∈ [0, 1].
The resulting minimization problem in equation (6) is solved using linear programming via the interior
point method (Koenker, 2005). Note that the τ values were chosen to cover the domain [0, 1] sufficiently
well, so that the lead time‐specific error estimate in equation (5) is a continuous distribution. Specifically,
the number of τ values were based on the number of ensemble members required by a particular forecasting
experiment and were chosen to vary uniformly between 0.06 and 0.96.

After bias correcting the single‐model forecasts using equations (4)–(7), the posterior distribution of each
model is assumed Gaussian. Thus, before implementing equation (3), both the observations and bias‐
corrected forecasts are transformed into standard normal deviates using the normal quantile transformation
(NQT; Krzysztofowicz, 1997). The NQT matches the empirical cumulative distribution function (cdf) of the
marginal distribution to the standard normal distribution such that

f tk;NQT ¼ G−1 cdf f tk
� �� �

; (8)

where cdf(.) is the cdf of the bias‐corrected forecasts from model k at time t, f tk; G is the standard normal dis-
tribution and G−1 its inverse; and f tk;NQT is the transformed, bias‐corrected forecasts from model k at time t.
When applying the NQT, extrapolation is used to model the tails of the forecast distribution for those cases
where a sampled data point in normal space falls outside the range of the training data maxima or minima.
For the upper tail, a hyperbolic distribution (Journel & Huijbregts, 1978) is used while linear extrapolation is
used for the lower tail.

Lastly, to determine the BMA probabilistic prediction in equation (3), the weight wt
k and variance σ2;tk of

model k at the forecast lead time t are estimated using the log likelihood function. Note that σ2;tk is the var-

iance associated with the Gaussian posterior distribution of model k. Setting the parameter vector θ

¼ wt
k; σ

2;t
k ; k ¼ 1; 2;…;K

� �
, the log likelihood function of θ at the forecast lead time t is approximated as

l θð Þ ¼ log ∑
K

k¼1
wt
kg Δt

NQT jf tk;NQT
� �� 	

; (9)

where g(.) denotes a Gaussian pdf andΔt
NQT is the forecasted variable in Gaussian space. Because of the high

dimensionality of this problem, the log likelihood function typically cannot bemaximized analytically. Thus,
the maximum likelihood estimates of θ are determined using the expectation maximization (EM)
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optimization algorithm (Bilmes, 1998). The steps required to implement the EM algorithm are provided in
Appendix A. Finally, discrete ensembles are sampled from the postprocessed predictive distribution using
the equidistant quantiles sampling approach (Schefzik et al., 2013).

Our proposed QR‐BMA approach consists of implementing equations (3)–(9). To apply QR‐BMA, we
used a leave‐one‐out approach where part of the forecast data set was used to train QR‐BMA and the
rest to verify the multimodel ensemble forecasts. We applied QR‐BMA at each forecast lead time t of
interest for selected forecast locations. As part of our forecast experiments, we generated both single‐
model and multimodel ensemble forecasts. The single‐model streamflow forecasts were generated from
GEFSRv2, while the multimodel forecasts were generated using the QR‐BMA technique to optimally
combine the single‐model forecasts. The single‐model forecasts were postprocessed using QR, following
the same leave‐one‐out approach used with QR‐BMA. Note that QR‐BMA was applied here indepen-
dently at each lead time; thus, it is suitable for generating forecasts when predictions are needed for a
single time.

2.2. Measures of Forecast Skill
2.2.1. Conditional Mutual Information
CMI is used as a measure of skill improvement following the approach by DelSole et al. (2014). The approach
allows to distinguish whether multimodel skill improvements are dominated by model diversity (i.e., addi-
tional information provided by the different models) or increased ensemble size (i.e., the addition of new
ensemble members). To present the CMI measure, we first introduce three related information‐theoretic
measures: entropy, conditional entropy, and mutual information (MI).

In the case of a continuous random variable (e.g., the streamflow forecasts F with pdf P(f), where uppercase
is used to denote the random variable and lowercase its realizations), the amount of average information
required to describe F is given by the entropy Η(F) defined as

Η Fð Þ ¼ −∫P fð Þ lnP fð Þdf : (10)

Entropy measures the uncertainty of F (Cover & Thomas, 1991). The entropy of a random variable condi-
tional upon the knowledge of another can be defined by the conditional entropy. The conditional entropy
between the streamflow observations O and forecasts F can be calculated using the chain rule:

Η OjFð Þ ¼ Η O;Fð Þ−Η Fð Þ: (11)

With equations (10) and (11), the MI between the streamflow observations and the forecasts, MI(O;F), is
given by (Cover & Thomas, 1991)

MI O;Fð Þ ¼ Η Oð Þ þΗ Fð Þ−Η O;Fð Þ
¼ ∬P o; fð Þ log P o; fð Þ

P oð ÞP fð Þ

 �

do df ;
(12)

where P(o, f) is the joint pdf of O and F, with marginal pdfs P(o) and P(f), respectively. MI is an elegant and
powerful measure to quantify the amount of information that one random variable contains about another
random variable. It is nonnegative and equal to zero if and only if O and F are independent from each other.
MI has several important benefits. It is a domain‐independent measure such that the information provided is
relatively insensitive to the size of data sets and outliers, unaffected by systematic errors, and invariant to any
nonlinear transformations of the variables (Cover & Thomas, 1991; Kinney & Atwal, 2014).

In the case of multimodel combinations, where F1 represents the single‐model ensemble mean and F2 repre-
sents the multimodel mean of the remaining models, the CMI between O and F2, conditioning out F1, is
given by

CMI O;F2jF1ð Þ ¼ MI O; F1;F2ð Þð Þ−MI O;F1ð Þ; (13)

where the mutual information MI(O; (F1,F2)) measures the degree of dependence between the observation
and the joint variability of the forecasts F1 and F2. According to equation (13), CMI quantifies the additional
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decrease in uncertainty due to adding a single‐model forecast to the multimodel forecast mean of the other
models. When the distributions are Gaussian, the CMI reduces to a simple function of partial correlation as
follows (Sedghi & Jonckheere, 2014):

CMI O;F2jF1ð Þ ¼ −
1
2
log 1−ρ2O2∣1

� �
; (14)

where ρO2 ∣ 1 denotes the partial correlation between O and F2 conditioned on F1. The partial correlation is
related to the pairwise correlations by (Abdi, 2007)

ρO2∣1 ¼
ρO2−ρO1ρ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2O1
� �

1−ρ212ð Þ
q ; (15)

where ρO1 and ρO2 are the correlation skills of F1 and F2, respectively, and ρ12 is the correlation between F1
and F2. Hereafter, the subscript 1 denotes single‐model forecasts, and the subscript 2 denotes either single‐
model forecasts or multimodel forecasts, depending on whether one is assessing the skill of single‐model or
multimodel forecasts.

To further understand any skill enhancements provided by a multimodel forecast, the streamflow forecasts
and observations can be partitioned into a conditional mean, called the signal variable α, and a deviation
about the conditional mean, called the noise variable β. As shown by DelSole et al. (2014), in the case that
all the ensemble members are drawn from the same model and the forecasts are computed with means of
ensemble size E1 and E2, the partial correlation in equation (15) becomes

ρnoiseO2∣1 ¼ ραO
E1

ffiffiffiffiffiffiffiffiffi
SNR

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR 1

E1
þ 1

E2

� �
þ 1

E1E2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR 1−ρ2αO

� �þ 1
E1

q ; (16)

where the signal‐to‐noise ratio SNR is defined as the ratio of signal variance to noise variance and ραO is the
correlation between the signal variable and streamflow observation. The partial correlation in equation (16)
is nonzero when a predictable signal exists (i.e., SNR ≠ 0), forecast skill exists (ραO ≠ 0), and the ensemble
sizes are finite. To the extent that forecast skill exceeds predictability skill,

∣ραO∣≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR

SNRþ 1

r
: (17)

Equation (17) implies that an upper bound on ραO results in an upper bound on the partial correlation in
equation (16). Thus, an upper bound on the skill improvement due to adding new ensemble members from
the same model can be estimated by combining equations (16) and (17) and taking the limit SNR → ∞,

ρnoiseO2∣1 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

E1 þ E2ð Þ E1 þ 1ð Þ

s
: (18)

Thus, any skill enhancement measured by equation (15) that exceeds the upper bound of equation (18) is
dominated by the addition of new predictable signals (DelSole et al., 2014).

We computed CMI using equations (14) and (15), together with the streamflow ensemble forecasts and
observations. We used equation (18) to obtain an upper bound for the skill improvement due to increased
ensemble size. Any improvements beyond this upper bound, we attributed to the addition of new signals
or model diversity. When using equations (14), (15), and (18), the subscript 1 refers to the single‐model fore-
casts F1 that one is trying to improve, and the subscript 2 the multimodel forecasts F2 or, in the case of a
single‐model experiment, the addition of new members from the same model. CMI was computed for each
individual model and multimodel combination at every lead time of interest for selected forecast locations.
Before computing CMI, both the streamflow observations and forecasts were transformed into Gaussian
space using NQT.

To implement CMI, three different experiments were performed: (i) 9‐member single model, (ii) 9‐member
multimodel, and (iii) 33‐member multimodel. The 9‐member single‐model experiment consists of a 3‐
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member single‐model forecast (F1) combined with a 6‐member ensemble from the same model (F2). Note
that this 6‐member ensemble may be treated as proxy for adding members from hydrological models with
very similar structures. This experiment was repeated for each of the models used. In the 9‐member mul-
timodel experiment, a 3‐member single‐model ensemble from one of the models (F1) was combined with
a 6‐member multimodel ensemble obtained using the remaining two other models (F2). This 6‐member
multimodel ensemble was generated as follows: (i) Three raw members from each of the remaining two
models were randomly selected, and (ii) the selected members were combined using the QR‐BMA post-
processor to generate a 6‐member multimodel ensemble. Note that the number of ensemble members
from each model are equal only in relation to the number of raw forecast members sampled from each
model. Additionally, in both the 9‐member single‐model and 9‐member multimodel experiments, the
values of E1 and E2 in equation (18) are 3 and 6, respectively. The last experiment, 33‐member multimo-
del, was the same as the 9‐member multimodel experiment but using instead 33 members. That is, an
11‐member single‐model ensemble from one of the models (F1) was combined with a 22‐member multi-
model ensemble obtained by postprocessing the remaining two other models (F2). For the CMI experi-
ments, raw single‐model forecasts were used for F1 to emulate basic operational conditions. The CMI
values for the different experiments were computed by first randomly selecting raw ensemble members
from each hydrological model. This process of randomly selecting raw forecasts from each model was
repeated several times for each CMI value, so that the reported CMI value is the average from
multiple realizations.

Additionally, we estimated CMI in streamflow space using the approach discussed by Meyer (2008). The
approach relies on the Miller‐Madow asymptotic bias‐corrected empirical estimator for entropy estimation
(Meyer, 2008; Miller, 1955) and an equal frequency binning algorithm for data discretization (Meyer,
2008). This approach does not require transforming streamflow into Gaussian space but has the drawback
that an exact upper bound, akin to equation (18), is not available. The CMI in streamflow space was com-
puted using the same experimental conditions described before for CMI in Gaussian space.
2.2.2. Continuous Ranked Probability Skill Score
Besides using CMI to measure skill improvements, we used the mean Continuous Ranked Probability
Skill Score (CRPSS; Hersbach, 2000) since this is a commonly used verification metric to assess the qual-
ity of ensemble forecasts (Brown et al., 2014). The CRPSS is derived from the Continuous Ranked
Probability Skill Score (CRPS). The CRPS evaluates the overall accuracy of a probabilistic forecast by esti-
mating the quadratic distance between the forecasts' cdf and the corresponding observations. The CRPS
is defined as

CRPS ¼ ∫
∞

−∞
cdf fð Þ−Π f−oð Þ½ �2df ; (19)

where

Π fð Þ ¼ 0 for f<0

1 otherwise


: (20)

Π(.) is the Heaviside step function.

To evaluate the skill of the forecasting system relative to a reference system, the associated skill score or
CRPSS is computed as

CRPSS ¼ 1−
CRPSm

CRPSr
; (21)

where the CRPS is averaged across n pairs of forecasts and observations to calculate the mean CRPS of the
main forecast system, CRPSm , and reference forecast system, CRPSr . The CRPSS ranges from [−∞, 1].
Positive CRPSS values indicate the main forecasting system has higher skill than the reference forecasting
system, with 1 indicating perfect skill. In this study, we used sampled climatology as the reference forecast-
ing system. Similar to our implementation of CMI, the CRPSSwas computed for both single‐model and mul-
timodel ensemble streamflow forecasts at each lead time of interest for selected forecast locations.
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Confidence intervals for the CRPSS were determined using the stationary block bootstrap technique (Politis
& Romano, 1994). Note that the CRPSS represents a quantitative measure of the overall forecast skill relative
to the reference system (i.e., sampled climatology), whereas the CMI represents the skill improvement or
enhancement provided by the multimodel forecasts. Thus, the CMI and CRPSS are not directly
comparable against each other. Our proposed multimodel forecasting approach is summarized in
Figure 1.

3. Experimental Setup
3.1. Study Area

The North Branch Susquehanna River (NBSR) basin in the U.S. Middle Atlantic Region was selected as the
study area (Figure 2; Nelson, 1966). Severe weather and flooding hazards are an important concern in the
NBSR, for example, the City of Binghamton, New York, has been affected bymultiple damaging flood events
over recent years (Gitro et al., 2014; Jessup & DeGaetano, 2008). In the NBSR, four different U.S. Geological
Survey (USGS) daily gauge stations were selected as the forecast locations (Figure 2). The selected locations
are the Ostelic River at Cincinnatus (USGS gauge 01510000), Chenango River at Chenango Forks (USGS
gauge 01512500), Susquehanna River at Conklin (USGS gauge 01503000), and Susquehanna River at
Waverly (USGS gauge 01515000). These forecast locations represent a system of nested subbasins with drai-
nage areas ranging from ~381 to 12,362 km2. A summary of the main characteristics of the selected gauge
locations is provided in Table 1.

Figure 1. Diagrammatic representation of the proposed multimodel forecasting approach. The approach starts with the
hydrometeorological ensemble forcing. The forcing is used to drive different hydrological models to generate single‐
model ensemble streamflow forecasts. The single‐model forecasts are subsequently bias corrected, transformed to
Gaussian space, and combined using BMA to generate multimodel ensemble streamflow forecasts. Lastly, both the single‐
model and multimodel forecasts are verified using the CRPSS and CMI. QR = quantile regression; CRPSS = Continuous
Ranked Probability Skill Score; NQT = normal quantile transformation; EM = expectation maximization;
CMI = conditional mutual information; BMA = Bayesian model averaging.
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3.2. Data Sets
3.2.1. Meteorological Forecasts
NOAA's latest global, medium‐range ensemble reforecast data set, the Global Ensemble Forecast System
Reforecast version 2 (GEFSRv2; https://www.esrl.noaa.gov/psd/forecasts/reforecast2/), was used as the
forecast forcing. The following GEFSRv2 variables were used: precipitation, specific humidity, surface pres-
sure, downward shortwave and longwave radiation, u‐v components of wind speed, and near‐surface air
temperature. The GEFSRv2 is an 11‐member ensemble forecast generated by stochastically perturbing the
initial NWP model conditions using the ensemble transform technique with rescaling (Wei et al., 2008).
The GEFSRv2 data are based on the same atmospheric model and initial conditions as the version 9.0.1 of
the NOAA's Global Ensemble Forecast System and run at T254 L42 (0.50° Gaussian grid spacing or
~55 km) resolution up to day 8. The 11‐member reforecasts are generated every day at 00 Coordinated
Universal Time. The GEFSRv2 forecast cycle consists of 3‐hourly accumulations for the first 3 days and 6‐
hourly accumulations after that. To generate the ensemble streamflow forecasts, we used the first 7 days
of GEFSRv2 data for the period 2004–2009. The GEFSRv2 data were bilinearly interpolated onto the regu-
larly spaced grid required by the hydrological models. Table 2 summarizes key information about the
GEFSRv2 data set. Additional details about the GEFSRv2 can be found elsewhere (Hamill et al., 2013).
3.2.2. Hydrometeorological Observations
Four main observational data sets were used: multisensor precipitation estimates (MPEs), gridded near‐
surface air temperature, phase 2 of the North American Land Data Assimilation System (NLDAS‐2;
https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php), and daily streamflow. These observational data sets
were used to calibrate and verify the hydrological models, perform the hydrological model simulations,

Figure 2. Map of the study area showing the terrain elevations, stream network, and the location of the selected gauged
stations. The inset map shows the approximate location of the study area in the United States.

Table 1
Characteristics of the Selected Gauged Locations

Location of outlet Cincinnatus, New York Chenango Forks, New York Conklin, New York Waverly, New York

NWS id CINN6 CNON6 CKLN6 WVYN6
USGS id 01510000 01512500 01503000 01515000
Area (km2) 381 3,841 5,781 1,2362
Outlet latitude (North) 42°32′28″ 42°13′05″ 42°02′07″ 41°59′05″
Outlet longitude (West) 75°53′59″ 75°50′54″ 75°48′11″ 76°30′04″
Minimum daily flowa (m3/s) 0.31 (0.11) 4.05 (2.49) 6.80 (5.32) 13.08 (6.71)
Maximum daily flowa (m3/s) 172.73 (273.54) 1,248.77 (1,401.68) 2,041.64 (2,174.734) 4,417.42 (4,417.42)
Mean daily flowa (m3/s) 8.89 (9.17) 82.36 (81.66) 122.93 (121.99) 277.35 (215.01)

aThe number in parenthesis is the historical (based on the entire available record, as opposed to the period 2004–2009 used in this study) daily minimum, max-
imum, or mean recorded flow.
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and obtain initial conditions for the forecasting runs for the period 2004–2009. Both the MPEs and gridded
near‐surface air temperature data at 4 × 4 km2 were obtained from the MARFC. Similar to the NCEP stage
IVMPEs (Moore et al., 2014; Prat & Nelson, 2015), the MARFCMPE product combines radar estimated pre-
cipitation with in situ gauge measurements to create a continuous time series of hourly, gridded precipita-
tion observations. The gridded near‐surface air temperature data were produced by the MARFC using
multiple observation networks, including the meteorological terminal aviation routine weather report
(METAR), USGS stations, and National Weather Service Cooperative Observer Program (Siddique &
Mejia, 2017). Additionally, we used NLDAS‐2 data for near‐surface air temperature, specific humidity, sur-
face pressure, downward longwave and shortwave radiation, and u‐v components of wind speed. The spatial
resolution of the NLDAS‐2 data is 1/8th‐degree grid spacing while the temporal resolution is hourly. Further
details about the NLDAS‐2 data can be found elsewhere (Mitchell et al., 2004). To calibrate the hydrological
models and verify the streamflow simulations and forecasts, daily streamflow observations for the selected
gauged locations were obtained from the USGS. In total, 6 years (2004–2009) of hydrometeorological obser-
vations were used. Table 2 summarizes the observational data sets.

3.3. Hydrological Models

To generate the multimodel forecasts, we used the following three hydrological models: Antecedent
Precipitation Index (API)‐Continuous (Moreda et al., 2006), NOAA's Hydrology Laboratory‐Research
Distributed Hydrologic Model (HL‐RDHM; Koren et al., 2004), and the Weather Research and
Forecasting Hydrological (WRF‐Hydro) modeling system (Gochis et al., 2015). We selected these three
hydrological models because they are relevant to operational forecasting in the United States and represent
varying levels of model structural complexity as well as different spatial resolutions and parameterizations.
The selected models collectively represent a sufficiently diverse set of models favorable for multimodel fore-
casting. The description of each model and the details about the configuration, calibration, and performance
of the models in simulation mode are provided in Text S1 in the supporting information. The parameters
selected for calibration, and the parameters' feasible ranges and calibrated values for the HL‐RDHM and
WRF‐Hydro models are summarized in Table S1.

The models were used to simulate and forecast flows over the entire period of analysis (years 2004–2009) at
the selected gauge locations (Figure 1) but were verified for the warm season only (May–October). We
focused on the warm season because flood events are more prevalent in our study area during these months.
The simulated flows were obtained by forcing the hydrological models with meteorological observations.
The streamflow simulations were verified against daily observed flows for the entire period of analysis, warm
season only (years 2004–2009, May–October). The HL‐RDHM simulations were performed for the period
2004–2009, with the year 2003 used as warm‐up. To calibrate HL‐RDHM, we first manually adjusted the a
priori parameter fields through a multiplying factor; once the manual changes did not yield noticeable

Table 2
Summary and Main Characteristics of the Data Sets Used in This Study

Data set Source
Horizontal

resolution (km2)
Temporal

resolution (hour) Variables

Meteorological forecasts
GEFSRv2 NCEP ~55 × 55

(0.5° × 0.5°)
3 (days 1–3) and 6
(days 4–7) hourly
accumulations

Precipitation, near‐surface temperature, specific
humidity, surface pressure, downward
shortwave and longwave radiation, and
u‐v components of wind speed

Hydrometeorological observations
NLDAS‐2 NASA ~13 × 13

(0.125° × 0.125°)
Hourly Near‐surface temperature, specific humidity,

surface pressure, downward longwave
and shortwave radiation, and u‐v components
of wind speed

MPEs MARFC ~4 × 4 Hourly Gridded precipitation
Temperature MARFC ~4 × 4 Hourly Gridded temperature
Gauge
discharge

USGS — Hourly Streamflow
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improvements in model performance, the multiplying factors were tuned up using the stepwise line search
algorithm (Kuzmin, 2009; Kuzmin et al., 2008). Out of all the HL‐RDHM adjusted parameters, the most
sensitive parameters were found to be the upper and lower soil zones transport and storage parameters, as
well as the stream routing parameters. The WRF‐Hydro simulations were performed for the period
2004–2009, with the first year used as warm‐up. To calibrate WRF‐Hydro, we implemented a stepwise
manual adjustment approach (Yucel et al., 2015); that is, once a parameter value was calibrated, its value
was kept fixed during the calibration of subsequent parameters. Out of all the adjusted parameters, the
most sensitive parameters were the soil, groundwater, and runoff parameters. After manually calibrating
the WRF‐Hydro parameters, the most sensitive parameter values were fine tuned using an optimization
algorithm, namely, dynamically dimension search (Tolson & Shoemaker, 2007). The API‐Continuous model
was previously calibrated by the MARFC for operational forecasting purposes using a manual approach.

Figure 3 summarizes the models' performance in simulation mode using the Pearson's correlation coeffi-
cient, R; Nash‐Sutcliffe efficiency, NSE; and percent bias, PB, between the simulated and observed stream-
flows at daily resolution for the entire analysis period. The overall performance of the models was
satisfactory (Figures 3a and 3b). API and HL‐RDHM exhibited comparable performance while WRF‐
Hydro tended to underperform relative to API and HL‐RDHM. The performance of the models is discussed
further in section 4.

3.4. Ensemble Streamflow Forecasts

To perform our forecast experiments, we generated and verified the following three different data sets of
ensemble streamflow forecasts: (i) raw single model, (ii) postprocessed single model, and (iii) multimodel.
The raw single‐model data set consisted of ensemble streamflow forecasts from each hydrological model
without postprocessing. The postprocessed single‐model data set was generated by using QR to postprocess
the raw ensemble streamflow forecasts from each hydrological model. Lastly, the multimodel data set was
generated by optimally combining the ensemble forecasts from the different hydrological models using
QR‐BMA. As part of the multimodel data set, we also generated an equal‐weight multimodel forecast by
using the same weight, 1/K, to combine the models rather than the optimal weights from QR‐BMA.
Additionally, for both the single‐model andmultimodel forecast data sets, we varied the number of ensemble
members used (9 to 33 members) to perform different experiments.

All the forecast data sets were verified across lead times of 1 to 7 days using 6 years of data (2004–2009) for
the warm season only (May–October). To postprocess and verify both the single‐model and multimodel
ensemble streamflow forecasts, a leave‐one‐out approach was implemented by using 4 years of forecast data
(training period) to train the postprocessor and the remaining 2 years to verify the forecasts. This was
repeated until all the 6 years of forecast data were postprocessed and verified independently of the training
period. The subdaily streamflow forecasts generated by the hydrological models were averaged over 24 hr to
get the mean daily flow. Six‐hourly streamflow forecasts were generated from API and HL‐RDHM, and

Figure 3. Performance of the hydrological models in simulationmode over the entire period of analysis (2004–2009, May–
October): (a) Pearson's correlation coefficient, R; (b) Nash‐Sutcliffe efficiency, NSE; and (c) percent bias, PB, between the
daily simulated and observed flows. API = Antecedent Precipitation Index; HL‐RDHM=Hydrology Laboratory‐Research
Distributed Hydrologic Model; WRF‐Hydro = Weather Research and Forecasting Hydrological modeling system.
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3‐hourly forecasts from WRF‐Hydro. The mean daily ensemble streamflow forecasts were verified against
mean daily streamflow observations for the selected gauged locations.

4. Results and Discussion
4.1. CRPSS Verification of the Single‐Model Forecasts
4.1.1. Raw Ensemble Streamflow Forecasts
In terms of the CRPSS (relative to sampled climatology), the raw single‐model ensemble streamflow fore-
casts remain skillful across lead times (1–7 days) and basins (Figures 4a–4d), with the exception of WRF‐
Hydro that has slightly negative CRPSS values at the longer lead times (6–7 days). In Figures 4a–4d, the
CRPSS values tend overall to decline with increasing lead time, as might be expected since the weather
uncertainties tend to grow and become more dominant of forecast skill as the lead time progresses
(Siddique & Mejia, 2017). There is also a slight tendency for the CRPSS values to exhibit spatial scale depen-
dency. The CRPSS values for each model tend to increase from the smallest (Figure 4a) to the largest
(Figure 4d) basin across lead times. This tendency is, however, rather weak throughout all of our forecasts,
and it is somewhat more apparent for the API and HL‐RHDM forecasts than for the WRF‐
Hydro (Figures 4a–4d).

Across all lead times and basins (Figures 4a–4d), the CRPSS values vary approximately from −0.15 (WRF‐
Hydro at the day 7 lead time; Figure 4d) to 0.6 (API at the day 1 lead time; Figure 4d). Contrasting the hydro-
logical models, the performance of API and HL‐RDHM is comparable, with the exception of CNON6
(Figure 4b) where API outperforms HL‐RDHM. This is due to HL‐RDHM having an unusually high percent
simulation bias of −14.3 for CNON6 relative to API whose simulation bias is −5.8. The performance of the
models in forecasting mode tends to mimic their performance in simulation mode (Figure 3). That is, API
tends to perform better than HL‐RDHM, and, in turn, both of these models tend to outperform WRF‐
Hydro. Deviations from this tendency, however, do emerge. For example, WRF‐Hydro has similar forecast-
ing skill as HL‐RDHM at the day 1 lead time in CINN6 (Figure 4a), even though in this basin HL‐RDHM
performs better than WRF‐Hydro in simulation mode. Similarly, API performs slightly better than HL‐
RDHM in forecasting mode at the later lead times (>4 days) in CINN6 (Figure 4a), but HL‐RDHM shows
better performance in simulation mode. Thus, the results obtained here in simulation mode do not always
translate to similar performance in forecasting mode. This is not surprising given the nonlinear relationship
between hydrological processes and weather forcings. It reinforces the need to verify hydrological models in
both simulation and forecasting mode to gain a more complete understanding of model behavior.

The underperformance of WRF‐Hydro, in both simulation and forecasting mode, in comparison to API and
HL‐RDHM may be due to several factors. One factor is likely to be the additional model complexity of
WRF‐Hydro. That is, WRF‐Hydro requires more forcing inputs and parameters to be specified than the other
two models. For example, in terms of forcings, HL‐RDHM requires only precipitation and near‐surface air
temperature to be specified, whereas WRF‐Hydro requires seven different forcings. It is possible that any
biases in the NLDAS‐2 or GEFSRv2 forcings used here to configure the WRF‐Hydro simulations and fore-
casts, respectively, could be affecting its performance. However, we evaluated (results not shown) for the
WRF‐Hydro streamflow forecasts the effect of each individual forcing on the CRPSS values and found that
precipitation was the most dominant forcing. At least in forecasting mode, the additional forcings used by
WRF‐Hydro do not seem to have a strong influence on its forecast skill. The relatively low performance of
the WRF‐Hydro could also be due to restrictions in its ability to represent physical processes because of a
priori constraints in model parameter values, which neglect the large uncertainty in parameter estimates
and large impact that parameters have on model predictions.

The determination of model parameter values for the WRF‐Hydro is another factor that is likely affecting its
performance. Although we calibrated selected WRF‐Hydro parameter values (see Table S1), both manually
and numerically, there is generally less community knowledge about and experience with WRF‐Hydro than
API and HL‐RDHM. The latter two have been around for much longer (e.g., Anderson et al., 2006; Koren
et al., 2004; Moreda et al., 2006; Reed et al., 2004) thanWRF‐Hydro. In the future, a more in‐depth sensitivity
analysis of the WRF‐Hydro model parameters could be beneficial. Nonetheless, the performance of WRF‐
Hydro in this study is comparable to those previously reported in the literature (Givati et al., 2016;
Kerandi et al., 2017; Naabil et al., 2017; Salas et al., 2018; Silver et al., 2017; Yucel et al., 2015).
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4.1.2. Postprocessed (Single‐Model) Ensemble Streamflow Forecasts
We used QR to postprocess the raw single‐model ensemble streamflow forecasts. Using the CRPSS (relative
to sampled climatology) to assess the forecast skill (Figures 4e–4h), we found that the postprocessed single‐
model ensemble streamflow forecasts show, overall, skill improvements relative to the raw forecasts. The
relative improvements are more noticeable for the WRF‐Hydro. For example, at WVYN6 (Figure 4d), the
raw WRF‐Hydro forecasts have a CRPSS value of ~0.27 at the day 1 lead time, and that value increases to
~0.6 after postprocessing (Figure 4h). However, since the hydrological models are calibrated with data sets
used for cross‐validating the postprocessor, the absolute CRPSS for the postprocessed forecasts are not repre-
sentative of real‐time conditions.

Interestingly, the CRPSS values for the postprocessed single‐model forecasts reveal that after postprocessing,
the models have comparable skill across lead times and basins (Figures 4e–4h), perhaps with the exception
of CNON6 (Figure 4f) where API tends to outperform the other models. This indicates that the streamflow
forecasts are influenced by systematic biases and, in this case, those biases are stronger in WRF‐Hydro than
in the other models. Such streamflow forecast biases result from the combined effect of biases in the weather
forcings and hydrological models. In regards to the former, precipitation forecasts from the GEFSRv2 are
characterized by an underforecasting bias in our study region (Sharma et al., 2017; Siddique et al., 2015), par-
ticularly at the longer lead times. This underforecasting bias affects all of our hydrological model forecasts,
so it is unlikely to be the cause of the strong biases seen in the WRF‐Hydro forecasts.

Hydrological model biases appear to have a strong effect on the performance of WRF‐Hydro, given the rela-
tively mild skill gains from postprocessing for the API and HL‐RHDMmodels and the larger gains for WRF‐
Hydro (Figures 4e–4h). Nonetheless, the QR postprocessor is able in this case to handle those biases. This
suggests that models with simple structure (e.g., API, which is spatially lumped and has fewer parameters)
may benefit less from postprocessing while models with complex structure (e.g., WRF‐Hydro, which is spa-
tially distributed and has more parameters) may be good candidates for postprocessing. It is also possible
that systematic biases in the WRF‐Hydro could be reduced through improved parameter sensitivity analysis
and calibration, as opposed to statistical postprocessing.

Figure 4. CRPSS (relative to sampled climatology) of the (a–d) raw and (e–h) QR‐postprocessed singlemodel ensemble
streamflow forecasts versus the forecast lead. The CRPSS are shown for the four selected basins. CRPSS = Continuous
Ranked Probability Skill Score; QR = quantile regression; API = Antecedent Precipitation Index; HL‐RDHM=Hydrology
Laboratory‐Research Distributed Hydrologic Model; WRF‐Hydro = Weather Research and Forecasting Hydrological
modeling system.
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Another interesting outcome from the postprocessed single‐model results is that the ranking of the models,
in terms of the CRPSS, varies depending on the lead time and basin. For example, both HL‐RDHM and
WRF‐Hydro tend to slightly outperform API at the day 1 lead time in Figure 4e, but API outperforms both
models at the later lead times (>6 days) in Figures 4f–4h. This is important because it indicates that there is
no single model that consistently outperforms the other models. In other words, it is not possible, at least in
terms of the CRPSS, to choose one model as the best in all cases. This suggests that it may be possible to max-
imize forecast skill across lead times and basins by optimally combining the outputs from the different mod-
els, as opposed to relying on a single model. It shows that multimodel forecasting may be a viable option to
enhance streamflow predictions.

4.2. CRPSS Verification of the Multimodel Forecasts

We now examine with the CRPSS the ability of multimodel forecasts to improve streamflow predictions. For
this, the CRPSS is again plotted against the forecast lead time for the selected basins (Figure 5). In Figure 5,
the following three different multimodel forecasting experiments are shown: (i) equal weight, (ii) 9 mem-
bers, and (iii) 33 members. For the equal‐weight experiment, the same weight, 1/K, was used to combine
the predictive distribution of the streamflow forecasts from each hydrological model. That is, instead of
using the optimal weights from QR‐BMA, the same weight was used to form a 9‐member multimodel fore-
cast. For the 9‐member and 33‐member experiments, we used 3 and 11 raw members per model, respec-
tively, to obtain a multimodel forecast with QR‐BMA; QR‐BMA was used to optimize the weights.
Additionally, the reference system used to compute the CRPSS values in Figure 5 consists of the postpro-
cessed ensemble streamflow forecasts from API, as opposed to sampled climatology. We selected API as
the reference system since this is currently the regional operational model being used to generate streamflow
forecasts in our study area.

We found that the 33‐member multimodel forecasts result in higher CRPSS values than API across lead
times and basins (Figure 5). The 9‐member multimodel forecasts perform similarly to the 33‐member fore-
casts, but in a few cases (e.g., Figure 5c at the day 5 lead time) the 9‐member forecasts result in lower (nega-
tive) CRPSS values than API. The equal‐weight experiment is only able to improve the CRPSS values at the
initial lead times (<3 or 4 days; Figure 5), while at the later lead times its CRPSS values are lower than API.
CNON6 offers an interesting case to further compare the single‐model and multimodel forecasts. In the
single‐model forecasts for CNON6 (Figure 4f), API tends to clearly outperform the other models. Despite
the better performance of API alone, the multimodel forecasts are still able to improve the skill for
CNON6 relative to the performance of API, with the largest improvement being ~0.16 at the day 7 lead time
for the 33‐member experiment.

The BMA weights associated with the multimodel forecasts (see Table S2) tend to reflect the performance of
the postprocessed forecasts for the individual models in Figure 4. For example, the API at CNON6 consis-
tently gets a higher weight than the other models, particularly at the longer lead times, while WRF‐Hydro
at CNON6, CKLN6, and WVYN6 has relatively low BMA weights at the later lead times. Additionally, the
weights show that even when the performance of one of the models is dominant, the remaining models
may still contribute to improving the multimodel forecasts. This is the case for CNON6 at the later lead times
(e.g., days 6 and 7 in Table S2), where despite the higher weights for API, the HL‐RDHM and WRF‐Hydro
are still assigned some weight.

In sum, the multimodel forecasts reveal skill improvements relative to API, which may be considered here
the best performing model in terms of the overall simulation and raw forecasts results; the optimal weights
fromQR‐BMA result in more skillful multimodel forecasts than using equal weights, particularly at the later
lead times (>3 days); and increasing the ensemble size of the multimodel forecasts results in relatively mild
skill gains. We also computed reliability diagrams, as determined by Brown et al. (2014), for the single‐model
and 9‐member multimodel forecasts (see Figures S2 and S3). The reliability diagrams show that the multi-
model forecasts tend, for the most part, to display better reliability than the single‐model forecasts.

Several studies have investigated the source of improvements (skill gains) from multimodel forecasts
(Hagedorn et al., 2012; Weigel et al., 2008, 2009). Those studies have found that multimodel forecasts can
improve predictions by error cancelation and correcting deficiencies (underdispersion) in the ensemble
spread of the single models. These sources of skill gain appear to be mainly statistical. This way of

10.1029/2018WR023197Water Resources Research

SHARMA ET AL. 1523



understanding the benefits of multimodel forecasts does not consider whether a particular model
contributes additional information to the forecasts. Considering the latter is important to be able to justify
adding any new models to an existing forecasting system. Another way to assess the source of
improvements from multimodel forecasts that accounts for the contribution of model information, signal
as opposed to noise, is through CMI, which we do next.

4.3. Skill Assessment Using CMI

We used CMI to determine whether the skill improvements from the multimodel forecasts are dominated by
model diversity or increased ensemble size alone. To this end, CMI was computed using equations (14) and
(15), together with the ensemblemean forecast, at lead times of 1–7 days for the selected basins (Figure 6). In
Figure 6, the following three different experiments are shown: (i) 9‐member single model (Figures 6a–6c),
(ii) 9‐member multimodel (Figures 6d–6f), and (iii) 33‐member multimodel (Figures 6g–6i). The experi-
ments are described in subsection 2.2.1.

For the first experiment, we used equations (14) and (18) to obtain a theoretical upper bound for CMI. This
theoretical bound represents the potential skill gain from the ensemble size alone. We found that the theo-
retical bound is in this case equal to 0.090. Figures 6a–6c show that indeed the empirical CMI values for the
9‐mmeber single‐model forecasts tend to be less than or around 0.090 for all three models across lead times
and basins. The 9‐member single‐model CMI values tend to be greater for API than HL‐RDHM and WRF‐
Hydro. This indicates that the less complexmodel, API, is able to maximize the skill gains from the ensemble
size alone. For example, in terms of the CRPSS, the raw single‐model forecasts from API and HL‐RDHM
have comparable skill in the case of CKLN6 (Figure 4c) and WVYN6 (Figure 4d). In contrast, the 9‐member
single‐model CMI values tend to be greater for API than HL‐RDHM in both cases, CKLN6 and WVYN6
(Figures 6a and 6b), particularly at the longer lead times. This ability of API to maximize the benefits from
ensemble size alone may be due to API being more sensitive than the other models to the weather forcing.
Also, in Figures 6a–6c, the tendency is for the CMI values to increase some with the lead time for all the
basins. This is more apparent for API and HL‐RDHM than WRF‐Hydro.

Contrasting the CMI values between the 9‐member single‐model (Figures 6a–6c) and 9‐member multimodel
(Figures 6d–6f) experiment, it is apparent that the multimodel forecasts have substantially greater CMI
values than the single‐model forecasts across lead times and basins. This indicates that any of the single‐
model forecasts (API, HL‐RDHM, or WRF‐Hydro) can be improved by combining them with forecasts from
the other models. Indeed, this improvement is dominated bymodel diversity rather than increased ensemble
size alone. Although the multimodel forecasts show skill gains at all the lead times, the tendency is for the
CMI values to increase with the lead time, suggesting that the multimodel forecasts may be particularly use-
ful for improving medium‐range streamflow forecasts.

Figure 5. CRPSS of the multimodel ensemble streamflow forecasts versus the forecast lead time for (a) CINN6,
(b) CNON6, (c) CKLN6, and (d) WVYN6. The CRPSS is plotted with reference to the QR‐postprocessed API forecasts.
Three different experiments are shown: equal weight (9 members), QR‐BMA (9 members), and QR‐BMA (33 members).
The equal‐weight experiment uses the same weight to combine the predictive distribution of the streamflow forecasts
from each hydrological model. The 9‐member and 33‐member experiments use 3 and 11 members per model, respectively,
to obtain a multimodel forecast with optimal weights using QR‐BMA. CRPSS = Continuous Ranked Probability Skill
Score; QR‐BMA = quantile regression‐Bayesian model averaging.
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Figure 6. CMI of the ensemble streamflow forecasts versus both the basin and forecast lead time for three different experi-
ments: (a–c) 9‐member single‐model, (d–f) 9‐member multimodel, and (g–i) 33‐member multimodel forecasts. The 9‐
member single‐model experiment consists of a 3‐member single‐model forecast from one of the hydrological models
combined with a 6‐member ensemble from the samemodel. In the 9‐membermultimodel experiment, a 3‐member single‐
model ensemble forecast from one of the models is combined with a 6‐member ensemble from the remaining other two
models (3 raw members from each model). The last experiment, 33‐member multimodel, is the same as the 9‐member
multimodel experiment but using instead 33 members (11 raw members from each model). The standard deviation
of the CMI values varies from 0.02 to 0.06. CMI = conditional mutual information; API = Antecedent Precipitation Index;
HL‐RDHM = Hydrology Laboratory‐Research Distributed Hydrologic Model; WRF‐Hydro = Weather Research and
Forecasting Hydrological modeling system.
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To further examine the hypothesis that improvements in CMI are dominated by model diversity rather than
the ensemble size alone, the CMI values from the 9‐member multimodel experiment (Figures 6d–6f) can be
compared against the values from the 33‐member multimodel experiment (Figures 6g–6i). From this com-
parison, it is seen that the CMI values for these two experiments are, overall, very similar across lead times
and basins. This further supports that incorporating additional information by adding new models plays an
important role in enhancing the skill of the multimodel forecasts. The results in Figure 6 indicate that hydro-
logical multimodel forecasting can be a viable approach to improve streamflow forecasts at short‐ and
medium‐range timescales. They suggest that model diversity is a relevant consideration when trying to
enhance the skill of streamflow forecasts. Although this is the case here for forecast skill, one would like
in the future to examine whether these results apply to other attributes of forecast quality. In particular,
metrics that are more responsive to the ensemble size than the adopted CMI formalism, which was based
on the ensemble mean, could be tried.

We also tested the effect on the CMI values of using postprocessed single‐model forecasts, as opposed to raw
forecasts. Thus, we calculated CMI (results not shown) for each basin and lead time using the QR postpro-
cessed single‐model forecasts, that is, the experiments in Figure 6 were repeated using the postprocessed
single‐model forecasts. We found that as was the case with the raw forecasts, the CMI values for the multi-
model combinations exceeded the theoretical upper bound of 0.090 and the CMI values remained very simi-
lar after increasing the ensemble size, that is, between the 9‐member and 33‐member multimodel
experiments. Thus, the ability of model diversity to enhance the skill of the streamflow forecasts is indepen-
dent of whether raw or postprocessed single‐model forecasts are used.

Additionally, the CMI values for all the different experiments in Figure 6 were recomputed (results not
shown) in streamflow space using the approach by Meyer (2008). Although a theoretical upper bound is
not available for this approach, the CMI values in streamflow space for the multimodel forecasts tended to
be noticeably greater than the values for the single‐model forecasts for most lead times. Moreover, differ-
ences in the CMI values between the 9‐member and 33‐member multimodel forecasts were only marginal.
Thus, the results for the experiments in Figure 6 using CMI values computed in both real (streamflow)
and Gaussian space, overall, exhibited similar trends. This is again indicative of the ability of model diversity
to enhance forecast skill beyond the improvements achievable by ensemble size alone.

5. Summary and Conclusions

In this study, we generated single‐model ensemble streamflow forecasts at short‐ to medium‐range lead
times (1–7 days) from three different hydrological models: API, HL‐RDHM, and WRF‐Hydro. These models
were selected because they represent different types of hydrological models with varying structures and
parameterizations. API is a spatially lumped model; HL‐RDHM is a conceptual, spatially distributed hydro-
logical model; and WRF‐Hydro is a land surface model. By forcing each hydrological model with GEFSRv2
data, single‐model ensemble streamflow forecasts were generated for four nested basins of the US NBSR
basin over the period 2004–2009, and the warm season (May–October). The single‐model forecasts were used
to generate multimodel forecasts using a new statistical postprocessor, namely, QR‐BMA. QR‐BMAuses first
QR to correct systematic biases in the single‐model forecasts and, in a subsequent step, BMA to optimally
combine the predictive distribution from each model. To further understand the performance and behavior
of the multimodel forecasts, we performed different ensemble streamflow forecast experiments by varying
the number of ensemble members, models, and weights used to create the multimodel forecasts.

From the forecast experiments performed, we found that the raw single‐model ensemble streamflow fore-
casts from both API and HL‐RHDM tended to outperform, in terms of the CRPSS, the forecasts from
WRF‐Hydro across lead times and basins. However, after postprocessing the raw single‐model forecasts using
QR, we found that the CRPSS performance of the individualmodels wasmostly comparable across lead times
and basins. In terms of the multimodel ensemble streamflow forecasts, we found that the implementation of
QR‐BMA tended to improve the skill of the forecasts relative to the performance of API, which can be con-
sidered here the best performing model in terms of the raw single‐model forecasts. Additionally, we com-
pared the forecasts from QR‐BMA against an equal‐weight experiment, where each model was assigned
the same weight. We found from this experiment that the optimal‐weight forecasts from QR‐BMA outper-
form the equal‐weight forecasts. The latter was particularly evident at the later lead times (> 3 days).
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Lastly, we used CMI to distinguish the source of the improvements for the multimodel forecasts. Although
the adopted CMI formalism does not capture all aspects of ensemble forecasts, it allows a robust analysis to
decide whether the skill enhancement from multimodel forecasts is dominated by model diversity or is only
due to the reduction of noise associated with the ensemble size. We found that skill enhancements across
lead times and basins are largely dominated by model diversity and that increasing the ensemble size has
only a small influence on the CMI values. This is important because it indicates that in an operational setting
the combination of different hydrological models, as opposed to only increasing the ensemble size of a single
model, may be an effective approach to improve forecast skill. It also highlights that there is no single model
that can be considered best in all forecasting cases, instead the benefits or strengths of different models can
be combined to produce the best forecast. Importantly, the benefits from using different models are, in this
case, not only due to the noise reduction associated with the ensemble size but with the ability of eachmodel
to contribute additional information to the forecasts.

Appendix A: Implementation of the EM Algorithm
We describe here the steps followed to implement the EM algorithm. The description uses the variables and

notation previously defined in subsection 2.1. To implement the EM algorithm, the latent variable zt;ik is
introduced, which has a value of 1 if the kth model ensemble is the best prediction at time step i and a value
of 0 otherwise. The EM algorithm starts with an initial weight and variance for each model set to

wt
k;Iter−1 ¼

1
K
; (A1)

and

σ2;tk;Iter−1 ¼
1
K
∑
T

i¼1

∑
K

k¼1
Δt;i
NQT−f

t;i
k;NQT

� �2

T
; (A2)

allowing the calculation of an initial log likelihood

l θIter−1ð Þ ¼ ∑
T

i¼1
log ∑

K

k¼1
wt
k;Iter−1g Δt;i

NQT j f t;ik;NQT ; σ2;tk;Iter−1

� �� 	
; (A3)

where T is the length of the training period extending over the time steps i ∈ [1,T]. After initializing the
weight and variance for each model, the EM algorithm alternates iteratively between an expectation and
maximization step until a convergence criteria is satisfied. In the expectation step, thebzt;ik for each time step
is estimated given the initial values of the weight and variance as

bzt;ik;Iter ¼ wt
k;Iter−1g Δt;i

NQT j f t;ik;NQT ; σ2;tk;Iter−1

� �
∑
K

k¼1
wt
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� � : (A4)

In the subsequent maximization step, the values of the weight and variance are updated using the current

estimate of zt;ik;Iter as follows:
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: (A5)

The log likelihood function in equation (A3) is then recomputed using the updated weight and variance as
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l θIterð Þ ¼ ∑
T

i¼1
log ∑

K

k¼1
wt
k; Iter g Δt;i

NQT j f t;ik;NQT ; σ2;tk;Iter

� �� 	
: (A6)

The expectation and maximization steps are iterated until the improvement in the log likelihood is no less
than some predefined tolerance, that is, (| (l(θIter) − l(θIter − 1))| ) < tol, in this case tol = 10−6.
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